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Kinetic energy as a perturbation: a convergent algorithm 

B G Giraud 
Service de Physique ThCorique, CEA-CEN Saclay, F-91191, Gif-sur-Yvette, France and 
Theoretical Division, T11, Los Alamos National Laboratory, Los Alamos, NM 87545, USA 

Received 26 August 1983 

Abstract. The potential energy V is placed into the unperturbed Hamiltonian H, and the 
kinetic energy K remains in the perturbation H,.  It is shown that a convergent N / D  
method, through standard Fredholm determinants, provides suitable matrix elements of 
an operator such as H , + H , ( E - H ) - ’ H , .  This confirms that the kinetic energy can be 
used as a perturbation in the Brillouin-Wigner theory. 

1. Introduction 

As discussed earlier (Giraud 1978, 1982), there is some interest in the situation where 
an N-particle Hamiltonian H = K + V can be split as a sum H = Ho+ AHI (with A = 1 
physically) of an easily diagonalisable operator Ho and a semi-positive definite operator 
H1. This interest lies in convergence properties of the Brillouin-Wigner perturbation 
theory, where the perturbed eigenvalues are solutions of the implicit equation 

E = EO+F(E). (1.1) 

In ( l . l ) ,  is the ground state energy of Ho, and one selects Ho so that is 
non-degenerate and the corresponding unperturbed eigenfunction a0 is square 
integrable and ‘very smooth’ (i.e. Q0 has everywhere derivatives of all orders and is 
exponentially decreasing at infinity both in coordinate and momentum representation). 
The function F ( E )  is a matrix element of the 9 operator defined by 

namely 
9~AhMl+hHlQ(E-QHQ)- ’AHl ,  Q = 1 - l@o)(@ol, (1.2) 

F ( E )  = F(E ,  A = 1) = (@olwl@o). (1.3) 

$3 =AH:/2{1 -AH:’2[Q/(E - H o ) ] H : / 2 } - 1 H \ / 2 ,  (1.4) 

The positivity of H1 induces the identity 

which relates 9 to the resolvent of an auxiliary operator 

x= H ; ” [ Q / ( E  - HO)]Hy2.  

This is known (Baker 1975a, b) to provide a favourable case for the convergence of 
diagonal Pad6 approximants. Hence, for a practical calculation of eigenvalues of H, 
one calculates an even number 2 M  of terms in the perturbation expansion of F 
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970 B G Giraud 

and one deduces from these first 2 M  terms the [ M / M ]  Pad6 approximant F M ( E ) .  
This replaces (1.1) by the M-dependent approximation 

E = &,+F,(E). (1.7) 

The point is, when H1 is regular or can be regularised in a uniform way, this scheme 
has been proved (Giraud 1978) to provide, as M + +a, a convergent set of increasing 
lower bounds to the bound state eigenvalues of H. The proof covers the case of the 
interelectronic repulsion in atomic and molecular physics, and also the case of the hard 
core internucleonic repulsion in nuclear physics. The scheme summarised by (1.7) 
thus appears to have a broad range of applications. But it would be even more useful 
i f  kinetic energy, a positive operator K indeed, could be used for H1. For that purpose, 
however, one has to face the fact that K is not a bounded operator. 

As shown recently (Giraud 1982), the singularity of K does not prevent the 
‘Brillouin-Wigner scheme’ remaining valid. Two precautions must be taken however. 
The first consists in defining 

HOE v - P I x ) ( x I ,  P > O ,  (1.8) 

HI = K + PIX>(Xl, (1.9) 

where the projector Ix)(xl and its strength constant p can be easily adjusted to an 
arbitrary choice of the unperturbed ground state IOo) and corresponding eigenvalue 
eo. It is convenient at this stage to assume that V is a ‘smooth’ local operator V ( r )  
(with derivatives at all order and at most a polynomial increase at infinity). The relation 
between and x, namely 

(1.10a) 

(1.10b) 

then specifies that x and Q0 have the same exponential decrease at infinity and 
smoothness properties. 

The second precaution is needed because the eigenvalues E under study lie in the 
continuum part of the spectrum of H,,, which has the same continuum as V. Cuts thus 
occur in the perturbation terms of F, equation (1.6), because of the propagator 
( E  -H0)-’. To bypass these spurious cuts, which are not present in the sum F ( E )  of 
the full series, one must calculate F ( E )  with Re E < 0 and Im E f 0 and one must 
minimise the modulus of [ E  - - F ( E ) ] .  It has indeed been proved that this modulus 
vanishes when E converges from the upper or lower complex plane towards the 
discrete, real eigenvalues of H. The square integrable state defined, for E complex, 
by the equation 

(1.11) 

then converges towards the desired eigenstate of If. 
The purpose of the present paper is to calculate F ( E )  when H ,  contains K,  equation 

(1.9). Because E is complex and K singular, it was not proved for K what was 
obtained for a regular perturbation, namely that F M ( E )  converges towards F ( E )  when 
M + + m  A fortiori it was not shown for K that (1.7) generates convergent lower 
bounds to the discrete eigenvalues of H. The present work, however, will show how 
F ( E )  can be reconstructed by a perturbation algorithm, quite analogous to a Pad6 
approximant, namely an N / D  method. 

I*>= IQo) + [ Q / ( E  -Ho)IHiI*)= I@o> + [ O / ( E  - QHQ)IHiI@o), 
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The  argument goes by two steps. Section 2 introduces a regularisation of K into 
a bounded operator K,. This defines an  operator B,, and the corresponding function 
F,(E) can then be calculated by a convergent algorithm. Then § 3 shows that F ( E )  
is the limit of F,(E)  when 77 + 0 as long as Im E # 0. The numerical example investi- 
gated in Giraud (1982) is then revisited and the demanded convergence when 77 + 0 
is indeed observed in § 4. 

2. Regularisation 

In the 3N-dimensional space, all inessential spin and isospin complications being 
omitted, let r = ( r l ,  . . . , r,v) and p = ( p l ,  . . . , p N )  denote the N-particle positions and 
momenta, respectively. The Hamiltonian under consideration is of the form 

N p 2  N 
H =  ---i+ U,,(r,-r,)+tW2R,2,m,,. 

( = I  2m, r > j = ~  

Here the total centre of mass has been constrained in order to remove Galilean 
degeneracy of the eigenstates, different masses have been allowed for the particles and 
the local potentials for each pair can differ from one  another, but these subtleties can 
be omitted in the following. More important a re  the conditions requested for the local 
and real potentials, namely smoothness (derivability at all orders) and at  most a 
polynomial increase at  infinity in coordinate space. 

With a suitable mass scaling if necessary, the matrix element of the kinetic energy 
operator in momentum representation trivially reads 

(p!Klp’) = P 2  8 ( P - P ’ ) .  (2.2) 

t) > 0. (2.3) (plK,!p’)= P 2  exp(-477 P 8 ( P - P ’ ) ,  

This defines an operator K ,  whose coordinate representation is now a bona fide 
convolution kernel, uniformly bounded and with derivatives of all orders 

(2.4) 

The  substitution of K ,  for K into the definitions of H, HI, 93 and F, respectively, 
but generates new operators and related functions 

The  regularisation high-frequency cut-off now considered in this work is taken as 
1 2 2  

( r lK , ! r ’ )  = [ a  + P ( r -  r’)’] exp[-(r- r ’ )2 / t )2] .  

Here a and P are just trivial N-dependent constants. 

changes nothing to  V, Ho, x, Qo, 
H,, HI,, 3, and F,. The present section deals with the calculation of F,,. 

In  the same way as 

F ( E )  = ( Q o I H 1 l W  

(see (1.3), (1.2) and (1.11)) one finds 

F,(E)  = ( @ o I ~ 1 , , l ~ , ) ,  (2.6) 
where V, is the solution of the analogue of ( l . l l ) ,  

IT,)= 1 Q o ) + [ Q I ( ~ - ~ o ) l ~ , . I ~ , , ) .  (2.7) 
It will now be proved that (2.7) reduces to  a Fredholm equation with a bounded, 
smooth and fast decreasing kernel. 
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Lemma 1. The square-integrable wavefunction X ( r )  is bounded, smooth and exponen- 
tially decreasing. 

This is a trivial consequence of (1.10b) since the local operator V(r )  has been 
chosen as smooth without fast increase and ao(r) can be freely chosen in this theory 
as smooth and fast decreasing. 

Lemma 2. For Im E # 0, the coordinate representation of ( E  - Ho)-' is the sum of a 
multiplicative term and a rank-1 kernel, both term and kernel being bounded and 
smooth. 

This is a consequence of the identity 

( E -  V+PIX) (X I ) - ' = (E -  V)- ' ( l - f l Ix) (xI (E-  W 1 ) ,  (2.8) 

y = p-l +(,yI(E - v)-'lxj. 

( r / ( E  -Ho)-'lr') = ( E  - V(r))- '  6 ( r -  r ' )  - y - ' p ( r ) p * ( r ' ) ,  

p ( r )  = x ( r ) l ( E  - V(r)).  

where y is the number 

(2.9) 

Hence 

(2.10) 

(2.11) 

with 

The denominator E - V(r)  has a modulus larger than or at most equal to Im E and, 
since Im E # 0, can generate no singularity. The matrix element (xJ(E - V)-'lx) is 
finite and so is y- '  since ( E  --Elo)-' exists as E is not in the spectrum of Ho. Smoothness 
of x and V and boundedness of x induce the same properties for p. 

Lemma 3. The coordinate representation of Q is the sum of the identity and a smooth, 
bounded, fast decreasing, rank-1 kernel 

(2.12) (r(Q1r'j = 6(r  - r') - Q0( r)@$( r ) .  

This is again trivial from the very choice of Qo. 

Lemma 4. For Im E # 0 the coordinate representation of Q(E - HJ1 is the sum of 
a multiplicative term and a rank-2 kernel, both term and kernel being bounded and 
smooth. 

This is obvious because, as a consequence of (2.12),  one finds 

Q(E  - f fo ) - '  = ( E  - Ho)-l -l@o)(E - ~ o ) - ' ( @ o ] ,  (2.13) 

and one just needs to read again (2.10). 

The needed theorem can now be stated. 

Theorem 1. For Im E # 0 the coordinate representation of Q ( E  - Ho)-'HIT is the 
sum A(r ,  r ' )  of two bounded and smooth kernels B(r ,  r ' )  and C(r ,  r ' ) ,  the second of 
them being of finite rank. 
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Indeed from (2.10) and (2.13) one finds 

[Q/ ( E  - Ho)IHi , = ( E  - W ' H i  , - Y-'IP)(PIHi , - ( E  - ~ o 1 - l  I@o)(@olHi ,. (2.14) 

then from (1.9) modified by the substitution of K ,  for K ,  this result, (2.14), becomes 

[Q/(E-Ho)IHi. = ( E -  V)- 'K,-Y-'IPXPIK,+ Y-'IP)(xIIP)(xI 
- ( E  - %-'l@o)(@olK, - ( E  - EO)-lP(@oIX)I@o)(XI. (2.15) 

The first term on the right-hand side of (2.15) provides the first kernel stated by the 
theorem, 

B( r, r ' )  = (rl(  E - V)- 'K, lr ' )  = ( E  - V (  r ) ) - ' [ a  + P ( r  - r'I2] exp[-( r - r ' )2 /  77'1, 
(2.16) 

when one has taken advantage of the locality of V and of the kernel definition of K,, 
(2.4). Smoothness (and finiteness) properties of this term are just read off (2.16). 
The last four terms in the RHS of (2.15) make the second kernel C, listed by the 
theorem, since they are dyadic. Smoothness and finiteness of (PO(r),  X ( r )  and p ( r )  
have already been stated. The same properties hold for (OolK,1r) and (po/K,lr), 
because for instance 

(plK,lr)= I dr '  P*w(r'IK,lr)  (2.17) 

is a trivial convergent convolution by a smooth and exponentially decreasing kernel, 
see (2.4). 

This result, theorem 1, would be sufficient to solve (2.7) by an N / D  method (Riesz 
and Nagy 1955) if the integration domain were finite. With the usual notations for 
the theory of Fredholm determinants, the solution in coordinate space reads (with 
A = 1 for the physical case) 

Y , ( r )  = O0( r )  + D-' 

(2.18) 
where A(  r, r ' )  is the coordinate representation of Q ( E  - Ho)-'H1,; then 

A(  r, r ' )  
A(  r", r ' )  

A( r, r") 

A( r", r") 
(2.19) 

and so on for the traditional determinants of the method, and finally the Fredholm 
determinant is 

d rA( r , r )+ -  d r d r ' A  (; ;:)- . . . .  
2! (2.20) 

As the integration domain is infinite, however, additional precautions are in order. 
For that purpose, it will first be assumed that I V ( r ) l  is short ranged (i.e. it decreases 

faster than any power of r when r -* CO). This special case excludes harmonic oscillators 
and Coulomb potentials for instance, but has nonetheless a broad range of interest. 
Then one finds the following result. 



974 B G Giraud 

Lemma 5. For Im E # 0 and a short-ranged V ,  the coordinate representation of the 
subtracted kernel As = Q ( E  - HJIHI, - E - ' K ,  is bounded, smooth and short ranged 
in both variables r and r ' .  

The four dyadics which make the kernel C ( r ,  r ' )  taken from the RHS of (2.15) 
have already the desired properties. One is only concerned with the subtracted kernel 
Bs= B- E-'&. From (2.16) one finds 

EBs(r,  r ' )  = (rl[ V / ( E  - V ) ] K , l r ' )  = [ V ( r ) / ( E  - V ( r ) ) l ( r l K ,  lr'). (2.21) 

Short range with respect to r is ensured by V ( r )  which appears in the numerator of 
Bs. Short range with respect to ( r - r ' )  is provided by K,; see again (2.4). The 
combination of the short ranges with respect to r on one hand, and ( r - r ' )  on the 
other, provides the short range with respect to r ' .  

Corollary to lemma 5. The kernel Bs(r,  r ' )  is integrable and square integrable (and 
actually integrable at all powers larger than 1). 

It is now convenient to write (2.7) as 

( 1  -E-'K,)IY,)= /@")+ASl*,), (2.22) 

where one recognises A s =  Q ( E  - HJIHi, - E-'K,, and of course A s =  B,+ C is 
smooth and short ranged (and thus integrable and square integrable). Equation (2.22) 
is equivalent t o  

(2.23) \Y,) = (1 - E-'K,)-'/@o) + 
with d (1 - E - ' K , ) - ' A s .  A last intermediate result will be necessary, namely: 

Lemma 6. The coordinate representation of (1 -E- 'K,)- '  is the sum of the identity 
and a fast decreasing, smooth convolution kernel. Indeed 

(rI(1 - E - ' K , ) - ' l r ' ) =  

where the denominator of the Gaussian-like integral remains smooth, bounded and 
non-vanishing, hence changes nothing to range and smoothness properties. 

Corollary to lemma 6. The wavefunction &(r)  = ( r ( (  1 - €-iK,)-'l@o) is smooth and 
fast decreasing. 

The case of short range potentials V is thus solved by the following. 

Theorem 2. For Im E f 0 and short-ranged V ,  equation (2.23) is a Fredholm equation 
with a smooth and short range kernel. 

Indeed, from lemma 6, the smoothness and short range properties of As are not 
modified by the convolution with the identity and the fast decreasing, smooth convol- 
ution kernel brought by (1 - - E ' K , ) - ' .  Integrability of d at all powers larger o r  
equal t o  1 is then automatic. 
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Substitution of d for A and 6o for 0 0  into (2.18)-(2.20) thus solves (2.7) by 
a convergent algorithm, both the numerator and denominator being entire functions 
of A. 

It is clear that the conditions of the infinite derivability and fast decrease at infinity 
which have been imposed upon V can be somewhat relaxed in order to generalise the 
validity of (2.18)-(2.20) when implemented with d. Other subtractions are also 
possible and one might for instance consider 

(2 .25)  

Rather than search for the largest class of slow (polynomial?) decreasing potentials 
which make d (or d’) sufficiently integrable for (2.18)-(2.20), the case of repulsive 
potentials increasing like polynomials will now be discussed briefly. 

For such repulsive ‘polynomial’ potentials, the kernel C deduced from the dyadics 
of (2.15) is again smooth and fast decreasing, thus one need only consider the properties 
of B = ( E  - V)-’K,. It is clear that if V increases ‘fast enough’, the coordinate 
representation of B will be accordingly fast decreasing with respect to both r and r’ .  
Indeed, a short range with respect to ( r -  r ’ )  is provided by (rlK,,lr’) and a complemen- 
tary decrease is provided directly by [ E  - V ( r ) ] - ’ .  Then (2.18)-(2.20) can be used 
directly with kernel A. The subtraction leading to kernel d is not necessary in that case. 

The one-dimensional oscillator studied in 0 4 will provide integrability and square 
integrability of the kernel A. A detailed discussion and generalisation of this result is 
not attempted in this paper. The centre-of-mass potential included in (2.1) to avoid, 
e.g., nuclear spurious states deserves a special comment, however. Since centre-of-mass 
and internal degrees of freedom are separated physically, one may subtract from K 
the centre-of-mass kinetic energy and include it inside V, thus Ho. One may also 
choose (and x) to factorise into a centre-of-mass Gaussian wavepacket, eigenstate 
of that modified Hn, and an internal wavefunction. This procedure is extremely familiar 
and just shifts and E by the relevant zero-point energy. Only the internal degrees 
of freedom will be activated by the perturbation expansion but all calculations will be 
made in the single particle representation. This is a technical advantage of some 
significance. 

3. Limit of the regularised solution 

Practical calculations will truncate (2.18) and (2.20) at some order M and thus generate 
a Fredholm (not PadC) approximant FM,,(E) to F ( E ) .  The Fredholm theory, with 
the conditions discussed in 0 2 ,  provides that FM,,(E) + F,(E)  when M + +a, namely 
that there exists an upper bound E ( M ,  E, v )  such that 

and 

lim E(M, E, v )  = O .  
M +;D 

Since in practical calculations one considers E to be restricted to some domain of 
the complex plane, which may be chosen compact, an interesting question is that of a 
uniform majorationt E(M, 7) and even of an even stronger majorationt E ( M ) .  Such 
f Here < ( M ,  T )  = supE E ( M ,  E, 7) and E ( M )  = S U ~ ~ , ~  E(M, E, 7) if such upper bounds are  finite 
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strong results could be useful for the purpose of the present section, which is to prove 
that the solutions of the approximate equations 

(3.3) 

(3.4) 

provide information on the solutions of (1.1). 
It is known in advance that solutions of (1.1) exist. N o  a priori similar statement 

is available for (3.3) and (3.4), all the more so because the second technical precaution 
recalled in 0 1 restricts Im E to be non-zero. Hence the argument will proceed by 
means of successive inclusions. The scheme is provided by the following definitions. 

Definirions. Let w be a positive number. The domains 9 , ( w ,  M, q), a 2 ( w ,  7) and 
9 , ( w )  are defined as the loci of the values of E for which, respectively 

Whenever necessary for FM, and/or F, this definition can be restricted to Im E # 0. 
The closure of these domains may however contain points and/or segments on the 
real axis. 

Since only F M 7  is available practically, one will try to generate a domain g 2  as a 
limit of domains 9, when M + 00, then a domain 9, as a limit of domains a2 when 
7+0. Then a solution of (1.1) is found (Giraud 1982) in the intersection of the 
domains 93 when w + 0. 

Lemma 7. If there exists a domain 9 T ( w ,  7) and an integer MO such that for all 
M > M O  the domains B a , ( w ,  M, 7) remain included in the domain 9 f ( u ,  v ) ,  then 
9 * ( w ,  7) is also included in 9 T ( w ,  7). 

This is trivial because for any point outside ' 3 T  the relation (3.5) is violated for 
all M 3 MO. Hence the limit F, of FM, violates the relation (3.6) outside 9:. 

A stronger result would be to include 9 2 ( w ,  7) in a domain 9 1 ( w t ,  MO, v ) ,  w ' >  w. 
This is possible if a uniform convergence bound b(M, 7) can be established, and one 
finds trivially u t  = w + b. This search for uniform convergence cases raises an interesting 
problem, which is not discussed in the present paper, however. 

In order to relate a2 to g3 it is now necessary to establish convergence of F, 
towards F when 7 + 0. 

The difference of these functions is 

F (  E )  -F,( E )  = (@ol AK + Hi GQHl-  (Hi  - A K ) G , Q ( H i  -AK)I@o), 

with 
(3.8) 

AK = K - K,, 

The momentum representation of AK is 

G = ( E  - QHQ)-' ,  G ,  = ( E  - QH,Q)-'. 

(3.9) 1 2 2  W K l p ' ) = p 2  6(p-p ' ) [ l  -exp(-zv P )I, 
hence, because ( p  1 00) has been selected with a fast decrease as p -* 00, the results: 
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Lemma 8. The vector AKJOo) converges strongly towards zero when 7 + 0. Indeed 

r 

The first integral on the RHS of (3.10) is bounded by 

I s= [ 1 - e x p ( - + ~ ) l ~  

(3.10) 

(3.11) 

where the fast decrease of Q0 makes p2Q0( p )  a square integrable function. The second 
integral is bounded by 

Both I s  and IL obviously vanish when T - ” ~  + CO. 

Corollary to lemma 8. Since for Im E # 0 the resolvents G and G, are bounded by 
(Im E)-’,  and since Q is also a bounded operator, the limit of ( F - F , )  reduces to 

lim[F( E )  - F,  ( E  )] = lim(ao( H I  (G - G,) QH, IQo). (3.13) 
,+O 11-0 

Lemma 9. The momentum components of the vector GQHII@o) decrease at least as 
fast as p-(2+3”2) when p +  CO. 

Let IX) and JY) ,  respectively, denote the vectors QH,I@,> and GQHIJ@o>. By 
definition I Y )  is the solution of 

( E  - H)I Y )  = IX) - l@o) (@o lH l  Y)-~I@o)(@ol Y )  + / @ o ~ ( @ o / ~ I ~ o ) ( @ o I  Y ) .  (3.14) 

It is known in advance that 1 Y )  exists and is square integrable since E is not in the 
spectrum of H (Im E # 0). Then (Q0l Y )  is finite. Furthermore the smoothness and 
fast decrease of IOo) makes HI@o) smooth and fast decreasing. Then (@olHl Y )  exists. 
Finally IX) is smooth since it contains only KlO0), IOo) and Ix). Therefore the RHS of 
(3.14) is a finite combination 12) of smooth and fast decreasing vectors. 

Then the identity 

( E - H ) - ’ = ( E  -K)-’[l+ V ( E  -H)- ’]  (3.15) 

provides that 

(PI Y)=(E-P2)-l((PIZ)+(PIVIY)).  (3.16) 

The existence and square integrability of 1 Y )  mean that ( r  1 Y )  is square integrable. 
Then if V is smooth and bounded in coordinate space, V(r ) ( r l  Y )  is also square 
integrable, hence (PI VI Y )  is also a square integrable function decreasing at infinity as 
fast as p - 3 N ’ 2  at least. The lemma is established since ( p l Z )  already decreases fast 
when p + m .  If V ( r )  has a polynomial increase when r+co ,  the lemma is again 
established if VI Y )  can be proved to remain in the Hilbert space of square integrable 
functions. This is trivial from the confinement properties of such potentials and the 
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very fast exponential decays of the tails of the square integrable solutions (rl Y) they 
induce. 

Lemma 10. The vector AKI Y) converges strongly towards zero when 7 + 0. 
The proof resembles that of lemma 8, as 

1 2 2 2  

+ J d p  1p2(p1 y ) 1 2 [ 1  -exp(-zT p 11 . 
. , - I  2 

From (3.16) and the choice of R e  E < 0 one finds that 

/ P 2 ( P /  Y?I<lW(P)l> 

where 

(3.17) 

(3.18) 

W(P) =(PI Z)+(Pl VI Y)> (3.19) 

is a square integrable function. Then the first integral in the RHS of (3.17) can be 
bounded by 

I$ = [1 -exp( -h ) I2  d p  I W(p)I2, (3.20) I 
and the second integral by 

(3.21) 

The limit of both I$ and 1; is trivially zero when 7 + 0.  
The final result can now be stated. 

Theorem 3. When 7 + 0 ,  F,(E) converges towards F ( E ) .  Indeed from (3.13) one 
derives 

(3.22) lim(F - F,) = lim(O0/H1 QG,QAKQGQHiI@o?, 

and then, by Schwarz’s inequality and the commutation of Q with G and G, 

l(Xl G,AK I Y)I (Im E)-lllXll llAK 1 Y)/l. (3.23) 

As shown by lemma 10, this vanishes when q + O .  

Corollary to theorem 3. If a domain 9 * * ( w )  contains all domains g 2 ( w ,  7)  when 
7 < v0, it contains g 3 ( w ) .  If 9 * * ( w )  contains all domains S l ( w , M ,  T)  for M > M ,  
and q < 7 0  it also contains B 3 ( w ) .  This is because any point outside of 9** will violate 
inequalities (3.5) and (3.61, thus their limits when M + a  then 7+0.  

In conclusion of this section, it has been proved that F ( E )  can be calculated as 
the limit of F,(E) .  This completes the result of § 2 where it was proved that F,(E)  
can be calculated as the limit of F,,,,(E). 
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4. Numerical application 

4.1. Technical details 

The one-dimensional oscillator H = x2 - d2/dx2 is considered again, and regularised as 

H,= v+~K,+(A- l )P lx ) (XI .  (4.1) 

For obvious technical reasons it is here useful to operate in momentum representation, 
where K ,  now appears as a short range potential and V as a pseudo kinetic energy. 
The ground state Q0 of Ho is again selected as 

(4.2) 

with a slight change in the definition of the phase of the eigenvectors IO), ll), etc of 
H, in order to have all their wavefunctions real in momentum space. Hence one selects 

(plao)= (1/,h)T-1/4(1 +J2p) exp(-p2/2), (4.3) 

( p i x ) =  ( 1 / J 2 ) . r r - L / 4 ( - J Z p 3 - p 2 + 3 ~ 2 p + 1  -E0J2p-E0) exp(-p2/2). (4.4) 

and x = ( V- eo)@" such as 

This phase modification changes nothing to the earlier result (Giraud 1982) 

F ( E )  = 2 - E O +  ( E  - 2)-', (4.5) 

and the arbitrariness of E~ < 0 with p = (1 - E ~ ) - ' .  

(2.16), reads 
In this one-dimensional model it is trivial to check that the kernel B, equation 

B(x, x' )  =(E-X2)-'K,[(X-X')/77], (4.6) 
and is thus integrable and square integrable. This makes both [ Q ( E  -HO)-'H1,] and 
[H,,Q(E - HO)- ']  trace operators and Hilbert-Schmidt operators. A solution of (2.7) 
by Fredholm approximants ( N /  D method) is then possible. Alternatively, since the 
regularisation of K into K ,  retains the positivity of K,  the perturbation H, ,  has the 
same positivity. Hence an equivalent of (1.5) exists and defines R,,, and furthermore, 
because of cyclic invariance of the trace, the number Tr R, =Tr[Q/(E - Ho)]H, ,  is 
finite and the number 

(4.7) Tr x, = Tr[ Q/ ( E  * - HO)IH1 ,[ Q/ ( E  - HO)IH1 ,, 
is also finite from Schwarz's inequality applied to the scalar product of Hilbert-Schmidt 
operators. 

In this application we do not elaborate longer on the Fredholm manipulation of 
(2.7), for it is easy in the present case to solve (2.7) directly. For it has been shown 
to be equivalent to 

( E  -ff,)l*,) = m E ) l @ o A  (4.8) 

where, as a matter of fact, 

D ( E )  =E-Eo-F, , (E) .  (4.9) 

It is therefore sufficient to define q, as the solution of 

( E  -H,)IQ,) = IQA (4.10) 
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the renormalisation coefficient D ( E )  being adjusted to the condition (@.,I'P,) = 1 
provided by (2.7), hence 

W E )  =[(@olQ,)l-l.  (4.11) 

There are several ways to solve (4.10). Since it also reads 

one may solve the two differential equations 

(4.12) 

(4.13) 

(4.14) 

where the index i = 1, 2 refers to and x on the RHS, respectively. The boundary 
conditions for 'PI, q2 are of course those of square integrability. Then A ( E )  is found 
from (4.13) itself by 

(4.15) 

Rather than using (4.14) the present calculation is based on a matrix approximation 
to (4.10). A set of basis functions T , ( p )  i = 1 , .  . . , A is chosen, and q, is expanded as 

A(E) = ( A  - 1)ll[(XI'PITI)+A(E)(X/'P2)1. 

(4.16) 

the coefficient c, obeying the conditions 

c (T,I(E -H,)Ir,)c, = (r,  IQJ. (4.17) 

This method is normally not the best to be used in the present case, because the 
reconstruction of the unbounded operator H,, by finite matrices may raise convergence 
problems, all the more so because the 'basis' {r} used in the following is a set of 
displaced Gaussians (in momentum space, with a width a) 

T-l/4a-1/2 exp[-( p -  k,)2/2a2]. (4.18) 

I 

Indeed this 'basis' is not orthonormal and the Gram-Schmidt overlap matrix 

N,, = (r,lr,) = exp[-(k, - k,)2/4a2] (4.19) 

is known to be ill conditioned. Nonetheless the experience gained in the generator 
coordinate theory of nuclear reactions (Wong 1975, Le Tourneux 1978) shows that 
an accurate numerical solution of this generalised Griffin-Hill-Wheeler equation 
(Griffin and Wheeler 1957, Hill and Wheeler 1953) 

(4.20) c (EN,, -H,,)c, = d, 

is possible. Here, with obvious notations 

H,, = v,, + AK], + ( A  - I)llX]Xl, 

v,, = (r,l vir,) = ~ , , [ 1 / 2 a ~ -  ( k ,  - k,)2/4a4], 

(4.21) 

(4.22) 

(4.23) 
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- - 2 -  -2 
U - U  +:72; 

then 
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(4.24) 

with 

and finally 

x, = (I- / x  1 ) = 2 - ' / 2 ~ 0 a - 1 / 2  exp[-k;/(2+2a2)] 

U02 =++1 /2u2 ,  (4.26) 

4.2. Results 

In this numerical application the value E g  = -0.5, far enough from the final eigenvalues 
1 and 3, has been selected. Various widths U for the basis, (4.18), have been considered, 

1.8 

1.1, 

1.0 

0.6 

- 0 . 6  

-1.0 

-1 . 1, 

-1.8 

Figure 1. Behaviour of the Brillouin-Wigner equation. The value 7 = 0 corresponds to 
the exact Hamiltonian. The value 7 = 0.5 corresponds to a very strong cut-off of the 
perturbation. Because of the observed strong convergence as r)  --* 0, the intermediate value 
7 = 0.3 is shown only in the left part of the plot. It is remarkable that for a small imaginary 
part of E. Im E = 0.1, the bundle of curves doe- cross the axis at E = 1 and E = 3. 
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with a typical value U = 1. Various step sizes in the mesh made by the k, ,  equation 
(4.18), have also been considered, with a typical minimal distance between wavepackets 
k,+l  - k ,  = 1. Finally various basis dimensions, ranging from 30 to 70, have also been 
investigated. Numerical stability has been obtained and the values of Re  D ( E )  for 
7 =0 ,  7 =0.3 and 7 = 0.5 are displayed as functions of R e  E in figure 1 when 
I m E = 0 . 1 .  

It is extremely striking that for 7 =0.5, which is a very strong cut-off of K ,  the 
values reached for Re  D ( E )  are extremely close to those of the exact case I) = O .  As 
a check of this strong convergence, the curve for 7 = 0.3 perfectly interpolates between 
7 = 0.5 and 7 = 0. It can be stressed, finally, that R e  D ( E )  vanishes for values of R e  E 
which are very close to the expected eigenvalues 1 and 3. 

The  numerical plot suggests furthermore that the cancellation of R e  D ( E )  for 
7 > 0 may provide lower bounds to the exact eigenvalues, a likely consequence of the 
positivity of the perturbation K ,  and of the operator inequality K ,  < K. but this has 
not been established as a theorem (all the more so Im E is small, but not zero). The  
conjecture defines an interesting line of investigation, however. 

5. Discussion and conclusion 

Two main results have been obtained, namely: ( i )  the kinetic energy operator can be 
used as a perturbation, provided a high frequency cut-off is implemented, and (ii) 
individual matrix elements of the resolvent of this regularised operator have a smooth 
limit when the cut-off is removed. 

\ 

Figure 2. (Schematic). ( a )  shows a two-body potential w'ith an equilibrium distance r0. 
( b )  shows three narrow wavepackets localised at that distance from each other. In ( c )  the 
kinetic energy increases the width of the wavepackets. In ( d )  the packets have fused but 
retain part of the classical limit geometry. 
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An inconvenience of the theory, however, is the use of a Fredholm algorithm 
because multi-dimensional integrations such as demanded by (2.18) and (2 .20)  tend 
to  be unwieldy. Fast algorithms for the calculation of F ( E )  would be of significant 
use in making the theory more useful. In that sense, Pade approximants might be 
investigated in order to take advantage of the positivity of K and the integrability of 
the kernels found in the theory, as recomended by Chisholm (1970). 

O n e  of the main applications of the theory which can be advocated is as follows. 
Assume that the interaction V( r, - r,) of the finite system of N particles under study 
has a minimum at some classical equilibrium distance ro (see figure 2(a ) ) .  This is a 
situation more than often met in molecular, atomic or  nuclear physics. When Planck’s 
constant is extremely small, the particles tend to  localise in narrow wavepackets locating 
f rom each other as much as possible at  this equilibrium distance, in order to minimise 
the potential energy. Such a model of a finite crystal can be selected as the  unperturbed 
state (figure 2 ( b ) ) .  Then as h ,  the coupling constant of K ,  is turned on, kinetic 
energy increases. the wavepackets must grow and start overlapping (figure 2( c ) ) .  
Although finite systems d o  not show sharp phase transitions, a melting of the crystal 
must be observed about some critical range of A .  The parameters and geometry of 
the resulting shape of the system (figure 2 ( d ) )  should then give some understanding 
of the collective degrees of freedom of the system. The  present theory thus looks like 
a constructive derivation of these collective phenomena shown by finite quantum 
systems when h reaches its physical value. 
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